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I. INTRODUCTION 

The mathematical question of the existence of a solution to a 

system of coupled nonlinear equations, such as that which occurs in 

the Hartree~Fock (HF) approximation, is still unanswered, On the 

other hand, several practical methods have been proposed, which 

solve the problem numerically. These methods rely on iterative 

procedures, which are pursued until an ad hoc defined stability of 

the results is achieved from one iteration to the next, Contrary to 

the situation found in solving most sets of nonlinear equations, the 

solution of the HF equations is subject to a stringent numerical 

check, which guarantees that the solution of the iterative procedure 

is indeed a solution of the HF equations. Before describing this 

check, which depends upon the self-consistency of the HF approximation, 

we shall first present briefly the currently most popular method for 

solving the equations. This method can be analyzed in terms of four 

distinct steps, the last two of which are iterated. 

Step 1: Select a convenient parameterization of the single 

particle orbitals, whose determinant represents the 

variational wave function. This can be accomplished 

either by expanding the wave functions in a basis , 1 in 

which case the expansion coefficients are to be deter­

mined, or by discretizing the wave functions on a spatial 

mesh, in which case the values of the wave functions at 

the mesh points are to be determined,
2 



Step 2: Select a physically reasonable approximation (e.g., 

Wood-Saxon or oscillator potential) to the one-body 

hamiltonian, h(O), where the iteration number is 

denoted by a superscript. 

Step 3: Compute the matrix elements of the one-body hamiltonian 

h(n) in the variational space selected in step 1, and 

determine the lowest eigenstates of h(n) in this space. 

This is generally3 achieved by diagonalizing h(n) to 

obtain simultaneously the single particle wave functions 

{~. (n)}, and corresponding energies {E. (n)}, where the 
l l 

subscript, i, labels the orbitals. At this stage the 

HF approximation, E(n), to the total energy E may also be 

computed. 

4 h (n+l) by f h Step : Construct taking the matrix elements o t e 

effective many body interaction v with respect to the 

wave function formed by occupying the orbitals of lowest 

energy determined in step 3. 

Steps 3 and 4 are then iterated until stability is achieved. 

For example, the iteration may be terminated when either the {s. (n)} 
l 

or E(n) differs from the {s. (n-l)} or E(n-l), respectively, by less 
l 

than a predetermined amount. 

The stringent check on the iterated solution, which was referred 

to above, is provided by the equality of the calculation of 

(1.1) 



or as 

E T + ( v) 

where ( v > is the expectation value of the effective potential v and T 

the expectation value of the kinetic energy 

A 
T I (1.2) 

i=l 

Equation (1.1) is satisfied only when self-consistency is achieved 

between the eigenfunctions, {~.}. of h, and the hamiltonian h, which 
1 

is itself a function of the eigenfunctions. The criterion that 

Eq. (1.1) be satisfied represents a critical test of the numerical 

method employed to solve the equations. It would, for example, reveal 

the existence of coding errors, which nevertheless maintain the 

convergence properties of the iterative procedure but is more usefully 

employed as a convergence criterion. 

The critical computational procedure in the solution arises at 

step 3. Indeed, the diagonalization of the hamiltonian matrix can 

only be performed conveniently for small variational spaces. For 

studies of medium mass nuclei, this can be easily achieved by the use 

of an oscillator basis. However for heavy deformed nuclei, such as 

the actinides, it is necessary to include up to 14 oscillator shells 

in the basis, in order to calculate the total energy within an accuracy 

of about 10 Mev. 4 In these cases non-sparse matrices of the order of 

lOOxlOO must be handled. Moreover, since the basis must necessarily 

be truncated, the effects on the solution of changes in the parameters 



of the basis, such as the oscillator frequency, and the deformation 

parameters must be studied, and optimal values of the parameters 

chosen. Further, for very exotic shapes, such as those occurring in 

the collision of ions or or in that part of the fission path between 

saddle point and scission point, a usable oscillator basis is no 

longer adequate. In such cases, two-center bases can be employed. 

However their use introduces an additional parameter in the definition 

of the basis and makes the optimization process yet more cumbersome. 

Finally, we note that the description of triaxial medium or heavy mass 

nuclei would require huge bases dependent upon at least three param-

eters, and that an accurate solution of the HF equations in such a 

basis appears to be hopeless. 

The natural way to avoid the basis generated problems outlined 

above is to discretize the wave functions on a three-dimensional 

spatial mesh. Firstly, such a parameterization is not likely to 

influence the shape of the wave function, as could a particular choice 

of oscillator basis. Secondly, such a parametrization depends upon but 

a single quantity, the size, !:::.x, of the mesh. 5 Moreover, in contrast 

to the optimization of the oscillator parameters, which requires a 

quasi-random search, it is evident that the smaller !:::.x, the more 

accurate the calculation. In practice a mesh size of the order of 

1 fro insures sufficient accuracy. This may be seen by examining 

Table 1, in which the kinetic and total energies of the nuclei 
16o 

40 and Ca are compared as calculated using a 1,0 fro mesh, an 0.8 fm 

mesh, and analytically. 



Even with such reasonably large values of Lx, the number of mesh 

points required in order to obtain a satisfactory description of a 

nucleus, and particularly of its surface, varies between several 

hundred in the case of two dimensional, axially symmetric systems, 

and several thousand in the case of three dimensional systems. Clearly, 

the repeated diagonalization of the large matrices generated in such 

problems becomes intractable. In addition the diagonalization proce-

dure provides unuseful information on highly excited levels which 

influence neither the HF hamiltonian nor the ground state energy. It 

is therefore our purpose in this paper to present an alternative method 

of solving the HF equations which requires that one deals only with 

occupied single particle levels, and is particularly adaptable for 

use with local or quasi-local HF hamiltonians, as occur when some of 

3 the most widely used effective interactions, such as that of Skyrme 

are employed. Indeed, with such interactionst the coordinate space 

representation of the single particle hamiltonian takes the form 

h(r) 
h2 

-V~ 2m*(r) ~ + V(r) (1.3) 

in which m*(r) and V(r) are respectively the effective mass and the 

self-consistent potential. When discretized on a spatial mesh, h 

becomes a sparse matrix with non-zero matrix elements only near the 

diagonal. Much less storage space is required to handle such a matrix, 

and the problem thus becomes tractable with standard computing 

facilities. 



The imaginary time step method, as we choose to refer to it, is 

so simple that it is difficult to imagine that we have been the first 

to discover its application to non-linear problems. Nevertheless, we 

feel justified in coining a name for it, first, because we were 

unable to find earlier references to the method in the domain of 

non-linear equations, and second, because we have been the first to 

employ the method in the solution of the nuclear HF problem. What 

follows is neither a rigorous mathematical justification of the method, 

nor a general numerical analysis. Rather we shall mainly describe the 

method in such a manner as to emphasize its physical justifications. 

We shall also prove, in the following section, that in the limit of 

an infinitesimal time step, the iterated approximation converges to 

the HF solution, and provides at the same time, the eigenstates of 

the one body hamiltonian. In section 3 we shall illustrate some 

numerical aspects of the method with typical solutions for nuclear 

systems. 



II. PRINCIPLE OF THE IMAGINARY TIME STEP METHOD 

The name is derived from the analogy of the method with that 

employed to solve the time-dependent Hartree-Fock (TDHF) equations 

j 1, ••. ,A (2.1) 

Equations (2.1) represent a set of A coupled, nonlinear, partial 

differential equations, in which the spatial derivatives are due to 

the kinetic energy term - h2/2 1 \! •- \! of h. 
~ m* ~ 

By discretizing in 

time, and introducing a time step 6t, with t = n6t, the solution, 
n 

{0j (n+l)}, of the partial differential equations at time tn+l may be 

approximated in terms of the solution at time t by 
n 

10. (n+l)) 
J 

(n +.l) 
( i A ,_L. 2 ) I ,1,. (n) > exp -hut r1 'I'J j=l,. .. ,A (2.2) 

1 
(n+2) 

in which h denotes the numerical approximation to the hamiltonian 

h(t) at time (n+1)6t. Various methods of calculating h(n+l/2) are 

discussed in references 6-8. Two properties of the exponential 

operator of Eq. (2.2) should be mentioned here. The first property 

is its unitarity, which ensures that the orthonormality of the initial 

set of wave functions will be preserved in the time evolution. The 

second property, crucial for the TDHF problem, deals with the conserva-

tion of energy. In appendix B of reference g, it is shown that for 

. { (n+l)} any two orthonormal sets of wave funct1ons 0. 
J 

difference of the HF energies can be written as
10 

and {0. (n)} the 
J 



A 

I 
j=l 

(2.3) 

By introducing the density matrix, p(n), which, in the coordinate 

representation may be written as 

( ~I P (n) IE 1 > 
A 
I ( r j1);. (n) ) < 1jJ. (n) I r' > 

j=l ~ J J ~ 

A 

I 
j=l 

1);. (n) (r)lj;. (n)~~ (r') 
J J 

(2.4) 

Eq. (2.3) takes the simpler form 

1 
( 1) ( ) (n+2) ( 1) ( ) 

E n+ - E n = Tr(h (p n+ - p n )) • (2.5) 

If the wave functions are evolved according to Eq. (2.2), the density 

matrix at time (n+1)6t is then given in terms of the matrix at time 

n6t by 

1 1 
( 1) i (n+2) ( ) · (n+2) 

p n+ = exp(- h 6t h ) p n exp( [ 6t h ) (2.6) 

It then follows, from Eq. (2.5), and the cyclic invariance of the trace, 

that E(n+l) E(n) = 0. The approximation method thus conserves the 

HF energy. Given this property, it is natural to hypothesize that the 

replacement of the time step 6t by the imaginary quantity -i6t will 

lead to a decrease of the HF energy. This is precisely what we shall 

now demonstrate, at least to first order in 6t. Accordingly, we 
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introduce the positive parameter A = 6t/h, and study the transformation 

I'±'. (n+l)) 
J 

1 
(n+2) ( ) 

exp(-Ah ) 1~. n ) 
J 

j = 1, ... ,A (2.7) 

Note that in the above formula, we have introduced a different symbol, 

capital psi, for the wave functions generated by the transformation, 

The functions{'±'.} differ from the{~.} of the TDHF iteration in that 
J J 

they do not constitute an orthonormal set. They must therefore be 

orthonormalized before proceeding to the next iteration. The imaginary 

time step method can thus be described as follows: 

Step 1: Select an initial set of single particle wave functions, 

{~. (O)}. For example one could work with the values of 
J 

harmonic oscillator or Nilsson wavefunctions on an 

appropriately discretized coordinate mesh. 

Step 2: Construct from the wave functions the hamiltonian h(n) 

Step 3: 

Step 4: 

(which, in the HF approximation is a function of 

( "::: I p ( n) I "::: ' >) • 

Generate the set of wave functions{'±'. (n+l)}, via the 
J 

transformation given in Eq. (2.7). 

Orthonormalize the{'±'. (n+l)} to obtain the{~. (n+l)}. 
J J 

Steps 2, 3, and 4 are then iterated until convergence is attained. 

The major difference with the numerical procedure used to solve the 

TDHF equations is the orthogonalization of the wave functions performed 

in step 4. Although the method of orthogonalization is arbitrary, in 

practice we employ the Schmidt method, because the wave functions~. 
J 



then converge to the eigenfunctions of the HF hamiltonian. An alternate 

method of orthogonalization would result in wavefunctions which differ 

from the ~. by a unitary transformation, and hence lead to the same 
J 

density matrix. 

Rather than discussing the manner in which the exponential trans-

formation, Eq. (2.7), is actually performed, we shall postpone this 

discussion to section 3, and shall now analyze some general properties 

of the iterative scheme. 

We begin by showing that the imaginary time step method leads to 

the eigenstates of the hamiltonian h. For this purpose, the self-

consistency condition is not important, and the dependence of h upon 

the iteration number need not be considered. Denote by{¢.}, j=l, ••. ,oo 
J 

the eigenstates of h, ordered with respect to increasing single 

particle energies s .. At a given time step n, the A wave functions 
J 

~. (n) may be expanded in the basis {¢.}, 
J J 

so that 

I~. (n) ) 
J 

I '¥ • ( n+l ) > = 
J 

(X) 

(X) 

(2.8) 

(2.9) 

It is clear from Eq. (2.9) that only the lowest eigenstate is retained 

after several exponential transformations. If a Schmidt orthogonaliza­

tion is then performed, the jth wave function will converge toward 
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* ¢. . Parenthetically we note that it is of no use to add to the 
J 

hamiltonian a negative constant -h0 in order to hasten the convergence. 

Indeed~ since this constant will enhance each component by precisely 

:\h 
the same factor e 0~ its effect will be totally eliminated in the 

Schmidt orthonormalization. 

Having shown that the method yields the lowest eigenstates of h, 

we now show, to first order in:\, that h(n) converges toward the self-

consistent hamiltonian. In the limit of small:\, Eq. (2.7) may be 

approximated as 

I~~'. (n+1)) 
J 

Upon Schmidt orthogona1ization, we obtain11 the wave functions 

ll/J.(n+l))= 
J 

(n +.l) 
(1+/.(c .<n) -h 2 )) ll/J_(n) > + 2:\ 

JJ J 

+ O(A2) • 
where 

j-1 
L E: .<n) Jl/J (n) > 

k=l k] k 

We next construct the change in the one body density 

(n+l) (n) p -p 

(2.10) 

( 2 .11) 

(2 .12) 

Substituting for l/J. (n+l) according to Eq. (2.10), we obtain (to first 
J 

order in /.) the result 

1< 
The validity of the statement is clear if one recalls that the Schmidt 
procedure ensures the orthogonality of the jth state to the previously 
crthogonalized states 1, 2 ... j-l. 



(n+l) (n) 
p -p (2.13) 

The change in the HF energy may now be found by substituting Eq. (2.13) 

in Eq. (2.5). Using the cyclic invariance of the trance, we have 

Consider now the operator 

Using the cyclic invariance of the trace, the idempotency of the 

2 
density matrix (p =p), and the hermiticity of p and h, we have 

1 1 
( ) (n+·-2) ( ) (n+-2) 

Tr ( p n h (1- p n ) h ) 

We have thus succeeded in showing that 

(2.14) 

(2.15) 

from which we conclude that the energy must decrease from iteration n 

to iteration n+l, until the operator A becomes equal to zero. Since 

the latter condition may be formulated as 

(n +.!) 
[h 2 ,p(n)]p(n) = 0 • (2.16) 



it is equivalent12 to the HF condition [ h, p] "" 0, We have consequently 

shown that for values of A sufficiently small to justify the linear 

expansion, the imaginary time step method results in a monotonic 

decrease in the HF energy, from iteration to iteration, until the 

density converges to the HF density. We have additionally shown that 

if Schmidt orthogonalization is performed after each iteration, as 

detailed by Eq, (2.10), the wave functions w. converge to the lowest 
J 

eigenstates of h. The diagonal elements of the matrix skj correspond~ 

ingly converge to the eigenvalues of h. 

The imaginary time step method may be related to another, re-

13 cently proposed method for solving the static HF equations by 

considering the transformation 

I W. (n+l) > 
J 

(n+l) A 
= (1-Ah 2 ) J W. (n) >+A I s (n) 

J k=l kj 

Equation (2.17) represents a more symmetric orthogonalization of the 

\jf, 's generated by the transformation of Eq. (2.7) than that accomplished 
J 

by the Schmidt method. The Eq. (2.17) differs from Eq. (2.10) in 

that all of the occupied states contribute to the sum, each weighted 

by the factor Askj, in Eq. (2.17). whereas only the states k < j. each 

weighted by the factor 2:\skj' contribute to the sum in Eq. (2.10). 

It is easily verified that Eq. (2.13) remains unchanged if the 

transformation Eq. (2.17) is employed rather than Eq. (2.10). Our 

discussion concerning the convergence of p to the HF solution therefore 

remains valid. As previously noted, however, the W.'s and s .. 'swill 
J JJ 

not be the eigenstates and eigenvalues, respectively, of h. In order 



to facilitate comparison with the method of Di Toro et a113 , we use the 

property 

p (n) ll/J. (n) > 
J 

to rewrite Eq. (2.17) as 

ll/J.(n+l) > 
J 

= ll/J. (n) ) 
J 

j 1, •.• ,A 

The unitarity of the transformation is then obvious, and a natural 

generalization of Eq. (2.18) is 

I \jJ. (n+l) > 
J 

1 (n+-) 
exp(A(P(n) ,h 2 ]) ll/J. (n)) 

J 
(2.19) 

D. T 113 h ' . d h b f ' d h 1 oro et a ave 1nvest1gate t e a ove trans ormat1on, an ave 

further proposed a procedure for determining an optimal value of A 

for each iteration. However from our point of view, this method, as 

described in Ref. 13, suffers from the fact that it explicitly deals 

with the density and hamiltonian matrices, so that its use has up to 

now been restricted to HF calculations where the standard method dis~ 

cussed in the introduction has already been proven valid. Of course 

when the matrices p and h are unmanageably large, the transformation 

of Eq. (2.19) can still be implemented. However the computation 

would proceed more slowly than the imaginary time step method (2.7). 

In this connection one should note that although the transformation 

given by Eq. (2.19) is unitary, the calculational necessity of trun~ 

eating the exponential expansion would destroy exact unitarity, and 



-16-

reorthonormalization of the wave functions would still be necessary. 

In concluding this section, we point out a practical simplifica-

tion of the algorithm used in the imaginary time step method, as 

compared to that required in TDHF. As is easily deduced, from the 

• < h (n+ 1) (n) . l1<near dependence of upon p, and the fact that p -p lS of 

first order in A, Eqs. (2.10)-(2.15) retain their validity when h(n+l/Z) 

is replaced by h(n). Indeed, we have found in practice that the 

algorithm remains stable, and the iterated equations converge to the 

HF solution, when this time saving replacement is made. 
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III. APPLICATION OF THE IMAGINARY TIME STEP METHOD 

In the last years, the imaginary time step method has been used 

to study a number of physical problems. For example, the method has 

been employed to calculate the ground states of projectile and target 

nuclei, to be used as the initial wave functions in TDHF calculations,
14 

and to obtain deformation energy curves, via constrained HF calcula~ 

tions, for studying the collision of various lp and 2s-ld shell 

1 . 15 nuc e1. With slight modification, the method has also been used to 

compute mass parameters pertinent to the reactions 12c + 12c and 

16o + 16o.
16 

In this section, we shall focus only on some practical 

aspects of the calculations. In particular, we shall study the 

influence of the magnitude of the parameter A, and of the number of 

terms retained in the exponential in Eq. (2.7), in calculations of 

40 the ground state of Ca. 

The code employed to perform the calculations allows triaxial 

deformation. The sole spatial symmetries imposed are planar symmetry 

with respect to the y=O plane and the z=O plane, so that the code can 

be used to study left~right assymetric nuclear systems. The single 

particle wave functions are discretized on a regular, three dimensional 

cartesian grid. In the calculations to be discussed below, the mesh 

size is equal to 1 fm, and the number of mesh points in the x, y, and 

z directions is 15, 7, and 7, respectively, thereby yielding a 

variational space of dimensionality 735. Before analyzing the factors 

which govern the convergence of the solutions, we first discuss our 

criteria for terminating the iterations. As previously discussed, 
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there exist two distinct convergence criteria, which, in principle, 

can be satisfied separately. First, the Slater determinant is to 

converge to the HF solution, and the energy concurrently to decrease 

to a minimum. An excellent check that this is achieved is provided 

by the test mentioned in the introduction. Second, the single particle 

wave functions are to converge to the eigenstates of h. As the satis~ 

faction of the latter condition guarantees the former, while the 

converse is not true, we have adopted the second criterion as the 

basis for terminating the calculations. To be specific, we have 

chosen, as a convenient measure of the quality of the eigenstates, 

the mean square deviation of the single particle energies, 

Typically, we require ~h to be less than 1 MeV, which yields an 

accuracy of roughly 1% or better for the eigenvalues of the occupied 

17 states. Since the loss of precision in the numerical results due 

to the finite mesh size exceeds by several orders of magnitude that 

due to the imaginary time step algorithm, we shall not compare the 

results with "exact" results. Such a comparison can be found in the 

appendices of Ref. 9, and in Ref, 18. 

We now turn to the question of the influence of the parameter A. 

As previously noted, the exponential time evolution operator must 

necessarily be approximated by a truncated expansion. In this analysis 

of the influence of A we use a. five term approximation to the 

exponentiaL The results are displayed in Fig, 1, in which the 



difference between the nth approximation to the HF energy and the HF 

energy is plotted as a function of t(n) = n6t, for several values of 

6t ~ Ah. The initial wave function of the 40ca nucleus is a determinant 

of harmonic oscillator functions. As may be seen from the figure, 

~22 
for values of 6t less than or equal to 0.04xl0 s, the calculation 

converges. In fact, further decrease of 6t not only causes no 

particular improvement, but instead only increases the computation 

time, since more iterations are required to arrive at a given total 

time, L 

The influence of the number of terms in the expansion of the 

exponential operator is illustrated in Fig. 2. In this figure, the 

difference between the nth approximation to the HF energy and the HF 

energy is plotted as a function of t(n) for expansions of the operator 

consisting of 2,3, •• and 10 terms. In all cases, the time step 

-22 6t ~ 0.08xl0 s. As may be seen from the figure, the method converges, 

for all practical purposes, when at least eight terms are retained 

in the approximation to the exponential for this particular time step. 

In fact, based upon experience, we have come to the conclusion that 

arbitrarily precise numerical results can be obtained with any value 

of 6t, provided a sufficient number of terms is retained in the 

exponential expansion. In general, we have found that computational 

efficiency is improved by using a small enough time step so that a 

four or five term expansion is sufficient, For this purpose, the 

value 6t ~ 0.04xl0-22
s is suitable when the mesh size 6x = 1 fm is 

used. 
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IV. CONCLUSION 

We have introduced a new method for solving the Hartree-Fock 

equations, that is specifically applicable to large systems. In 

addition to being applicable to problems for which most previous 

methods are unfeasible it is also computationally more efficient than 

alternate schemes. While our utilization has been restricted to the 

nuclear Hartree-Fock problem we believe this procedure may be of value 

to a much wider class of non-linear problems 
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Table 1. Comparison of the kinetic energy T and H.F. energy E cal­
culated from discretized oscillator wave functions with the 
analyti~al values. The oscil~~tor parameters /mw/n are 
.275 fm 2 for 16o and 0.25 fm for 40ca. The spatial 
derivatives occurring in the calculation of the kinetic 

~X 0.8 

~X 1 

analy 

energy are calculated with a 9-point method and that occurring 
in the rest of the H.F. energy with a 5-point method. The 
interaction used to calculate the H.F. energy is the Skyrme 
force SIII as described in Ref. 3. The mesh size ~x is given 
in fm and the energies in MeV. 

160 40Ca 

T E T E 

205.280 -102.803 622.006 -307.308 

205.253 -102.901 621.933 -307,656 

205.288 -102.801 622.086 -306 '730 
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FIGURE CAPTIONS 

F ' 1 mh d ' ff b h th ' ' h H"' 1.g. . . 1 e 1. erence etween t e n approxnuat1.on to t e 1.· energy 

and the HF energy is plotted as a function of t(n) = n6t, for 

several values of 6t Ah. 

F . 2 Th d' ff b h th . ' h HF 1.g. . e 1. erence etween t e n approx1.mat1.on to t e energy 

and the HF energy is plotted as a function of t(n) = n6t, for 

expansions of the exponential operator consisting of from 2 

to 10 terms. 
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